David Gelashvili

TO WARD THE THEORY OF DYNAMIC PROBLEMS OF COUPLE-STRESS THERMODIFFUSION OF DEFORMABLE SOLID MICROPOLAR ELASTIC BODIES

Abstract

The matrices of fundamental and other singular solutions are constructed for system of stationary oscillations of the theory of couple-stress thermodiffusion of deformable solid micropolar elastic media in the three-dimensional case and their properties are established. The basic and mixed generalized potentials are constructed and and their boundary and differential properties indicated.

Key words and phrases. Couple-stress thermodiffusion, elasticity, fundamental solutions, potentials.

Connection between processes of strain, torsion-bending, heat conduction and diffusion in micropolar solid isotropic elastic media is described by the second order eight scalar partial differential equations [1]

$$
\begin{equation*}
L\left(\frac{\partial}{\partial x}, \sigma\right) U(x, \sigma)=0 \tag{1}
\end{equation*}
$$

where $L\left(\frac{\partial}{\partial x}, \sigma\right)$ - matrix differential operator of size 8×8

$$
\begin{gathered}
L\left(\frac{\partial}{\partial x}, \sigma\right)=\left\|L_{i j}\left(\frac{\partial}{\partial x}, \sigma\right)\right\|_{8 \times 8}, \\
L_{i j}=\left\|\begin{array}{cc}
L^{(1)} & L^{(2)} \\
L^{(3)} & L^{(4)}
\end{array}\right\|, \quad i, j=1, \ldots, 6, \quad L^{(k)}=\left\|L_{i j}^{(k)}\right\|_{3 \times 3}, \quad k=1, \ldots, 4, \\
L_{i j}^{(1)}=\left[(\mu+\alpha) \Delta+\varrho \sigma^{2}\right] \delta_{i j}+(\lambda+\mu-\alpha) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}, \quad L_{i j}^{(2)}=L_{i j}^{(3)}=-2 \sum_{k} \varepsilon_{i j k} \frac{\partial}{\partial x_{k}}, \\
L_{i j}^{(4)}=\left[(\nu+\beta) \Delta+\left(I \sigma^{2}-4 \alpha\right)\right] \delta_{i j}+(\varepsilon+\nu-\beta) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}, \quad L_{i j}=i \sigma \gamma_{i-6} \frac{\partial}{\partial x_{j}}, \quad i=7,8, \quad j=1,2,3, \\
L_{i j}=0, \quad i=7,8, \quad j=4,5,6, \quad L_{j i}=-\gamma_{i-6} \frac{\partial}{\partial x_{j}}, \quad i=7,8, \quad j=1,2,3, \quad L_{j i}=0, \quad i=7,8, \quad j=4,5,6, \\
L_{77}=\delta_{1} \Delta+i \sigma a_{1}, \quad L_{88}=\delta_{2} \Delta+i \sigma a_{2}, \quad L_{78}=L_{87}=i \sigma a_{12} .
\end{gathered}
$$

$U=\left(u, \omega, u_{7}, u_{8}\right)^{*}=\left\|u_{k}\right\|_{8 \times 1}, \quad u=\left(u_{1}, u_{2}, u_{3}\right)^{*}$ - displacement vector, $\omega=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)^{*}$ - rotation vector, u_{7} - temperature variation, u_{8} - chemical potential of the domain, $x=\left(x_{1}, x_{2}, x_{3}\right)$ - point of Euclidean space $E^{3}, *$ indicates on the operation of the transformation, Δ - three-dimensional Laplacian operator, $\delta_{i j}$ - Kronecker's symbol, $\varepsilon_{i j k}$ - Levi-Civita's symbol, $\lambda, \mu, \varrho, I, \nu, \alpha, \beta, \varepsilon, \gamma_{1}, \gamma_{2}, \delta_{1}, \delta_{2}, a_{1}, a_{2}, a_{12}$ - known elastic, thermal and diffusional constants, which satisfy natural restrictions [1,2]

$$
\begin{array}{lllll}
\varrho>0, & \mu>0, & 3 \lambda+2 \mu>0, & \alpha>0, & \delta_{1}>0, \tag{3}
\end{array} a_{1}>0, \quad \gamma_{1}>0, \quad . \quad . \quad . \quad 3>0, \quad \delta_{2}>0, \quad a_{2}>0, \quad \gamma_{2}>0, \quad a_{12}^{2}-a_{1} a_{2}<0 .
$$

σ - real or complex parameter.
Let

$$
\begin{equation*}
\Phi(x, \sigma)=\left\|\Phi_{i j}(x, \sigma)\right\|_{8 \times 8}=\left\|\Phi^{1}, \Phi^{2}, \ldots, \Phi^{8}\right\|- \tag{4}
\end{equation*}
$$

matrix of fundamental solutions of system (1), where $\Phi^{k}(x, \sigma)=\left(\Phi_{1 k}, \Phi_{2 k}, \ldots, \Phi_{8 k}\right)^{*}, \quad k=1, \ldots, 8-$ vector-columns, which satisfy homogeneous equation $L\left(\frac{\partial}{\partial x}, \sigma\right) \Phi^{k}(x, \sigma)=0$, for $\forall x \in E^{3} \backslash\{0\}$.

Let $\sigma \neq 0$ and we shall seeking $\Phi(x, \sigma)$ in the form

$$
\begin{equation*}
\Phi(x, \sigma)=\hat{L}\left(\frac{\partial}{\partial x}, \sigma\right) \varphi(x, \sigma) \tag{5}
\end{equation*}
$$

where $\hat{L}\left(\frac{\partial}{\partial x}, \sigma\right)$ is connected with $L\left(\frac{\partial}{\partial x}, \sigma\right)$ matrix:

$$
\begin{equation*}
\hat{L}\left(\frac{\partial}{\partial x}, \sigma\right) \cdot L\left(\frac{\partial}{\partial x}, \sigma\right) \equiv L\left(\frac{\partial}{\partial x}, \sigma\right) \cdot \hat{L}\left(\frac{\partial}{\partial x}, \sigma\right) \equiv \operatorname{Idet} L\left(\frac{\partial}{\partial x}, \sigma\right) \tag{6}
\end{equation*}
$$

I - unit matrix of size 8×8. Hence,

$$
\begin{equation*}
\operatorname{det} L\left(\frac{\partial}{\partial x}, \sigma\right) \varphi(x, \sigma)=0 \tag{7}
\end{equation*}
$$

Direct calculations give

$$
\begin{equation*}
\operatorname{det} L\left(\frac{\partial}{\partial x}, \sigma\right)=\delta_{1} \delta_{2}(\lambda+2 \mu)(\varepsilon+2 \nu)(\mu+\alpha)^{2}(\nu+\beta)^{2}\left(\Delta+\lambda_{4}^{2}\right)\left(\Delta+\lambda_{5}^{2}\right) \prod_{j=1}^{6}\left(\Delta+\lambda_{j}^{2}\right) \tag{8}
\end{equation*}
$$

where constants $\lambda_{k}^{2}, k=1, \ldots, 6$ are defined from the identities

$$
\begin{gather*}
\sum_{k=1}^{3} \lambda_{k}^{2}=\frac{\sigma}{(\lambda+2 \mu) \delta_{1} \delta_{2}}\left[\varrho \sigma \delta_{1} \delta_{2}+(\lambda+2 \mu) i\left(a_{1} \delta_{2}+a_{2} \delta_{1}\right)+i\left(\delta_{1} \gamma_{2}^{2}+\delta_{2} \gamma_{1}^{2}\right)\right], \\
\sum_{k=1}^{3} \lambda_{k-1}^{2} \lambda_{k}^{2}=\frac{\sigma^{2}}{(\lambda+2 \mu) \delta_{1} \delta_{2}}\left[\varrho \sigma i\left(a_{1} \delta_{2}+a_{2} \delta_{1}\right)+(\lambda+2 \mu)\left(a_{12}^{2}-a_{1} a_{2}\right)+\left(2 \gamma_{1} \gamma_{2} a_{12}-a_{1} \gamma_{2}^{2}-a_{2} \gamma_{1}^{2}\right)\right], \quad \lambda_{0}^{2} \equiv \lambda_{3}^{2}, \tag{9}\\
\prod_{k=1}^{3} \lambda_{k}^{2}=\frac{\varrho \sigma^{4}\left(a_{12}^{2}-a_{1} a_{2}\right)}{(\lambda+2 \mu) \delta_{1} \delta_{2}}, \\
\lambda_{4}^{2}+\lambda_{5}^{2}=\frac{\varrho \sigma^{2}}{\mu+\alpha}+\frac{I \sigma^{2}-4 \alpha}{\nu+\beta}+\frac{4 \alpha^{2}}{(\mu+\alpha)(\nu+\beta)}, \quad \lambda_{4}^{2} \cdot \lambda_{5}^{2}=\frac{\varrho \sigma^{2}}{\mu+\alpha} \cdot \frac{I \sigma^{2}-4 \alpha}{\nu+\beta}, \quad \lambda_{6}^{2}=\frac{I \sigma^{2}-4 \alpha}{\varepsilon+2 \nu} .
\end{gather*}
$$

It is shown that $\lambda_{k}^{2}, k=1, \ldots, 5$ are complex values.
Noting, that all elements of matrix $\hat{L}\left(\frac{\partial}{\partial x}, \sigma\right)$ contain multiplier $\left(\Delta+{ }_{4}^{2}\right)\left(\Delta+\lambda_{5}^{2}\right): \quad \hat{L}\left(\frac{\partial}{\partial x}, \sigma\right)=$ $\hat{L}_{0}\left(\frac{\partial}{\partial x}, \sigma\right)\left(\Delta+\lambda_{4}^{2}\right)\left(\Delta+\lambda_{5}^{2}\right)$, we shall have on account of $\hat{\varphi}(x, \sigma)=\delta_{1} \delta_{2}(\lambda+2 \mu)(\varepsilon+2 \nu)(\mu+\alpha)^{2}(\nu+\beta)^{2} \varphi(x, \sigma)$

$$
\begin{equation*}
\prod_{k=1}^{6}\left(\Delta+\lambda_{k}^{2}\right) \hat{\varphi}(x, \sigma)=0 \tag{10}
\end{equation*}
$$

From this follows

$$
\begin{equation*}
\hat{\varphi}(x, \sigma)=\sum_{k=1}^{6} b_{k} \frac{\exp \left(i \lambda_{k}|x|\right)}{|x|} . \tag{11}
\end{equation*}
$$

Picking up constants $b_{k}, k=1, \ldots, 6$ in that way that partial derivatives of $\hat{\varphi}$ of 9 -th order will have particlarity $|x|^{-1}$, we shall have (on the assumption of $\lambda_{k}^{2} \neq \lambda_{j}^{2}, k \neq j=1, \ldots, 6$)

$$
b_{k}=\frac{1}{2 \pi} \prod_{j=1}^{5} \frac{1}{\left(\lambda_{k+j}^{2}-\lambda_{k}^{2}\right)}, \quad k=1, \ldots, 6, \lambda_{j+6}=\lambda_{j}, j=1, \ldots, 5
$$

Substituting this founded value of $\left(\Delta+\lambda_{4}^{2}\right)\left(\Delta+\lambda_{5}^{2}\right) \varphi=\frac{1}{\delta_{1} \delta_{2}(\lambda+2 \mu)(\varepsilon+2 \nu)(\mu+\alpha)^{2}(\nu+\beta)^{2}} \hat{\varphi}$ in (5), we arrive at the seeking matrix of fundamental solutions $\Phi(x, \sigma)$.

Next identity is valid

$$
\Phi^{*}(-x, \sigma)=\tilde{\Phi}(x, \sigma)
$$

where $\tilde{\Phi}(x, \sigma)$ - matrix of fundamental solutions of conjugated operator $\tilde{L}\left(\frac{\partial}{\partial x}, \sigma\right)$.

Let $D \subset E^{3}$ - finite area, surrounded by the Liapunov surface S, and U - regular in D vector [2]. From the corresponding Green's formula, in the standard way we obtain representation formula for the regular vector

$$
\begin{gather*}
\int_{S}\left[\tilde{Q}_{(p)} \Phi^{*}(x-y, \sigma)\right]^{*} P_{(p)} U d_{y} s-\int_{S}\left[\tilde{P}_{(p)} \Phi^{*}(x-y, \sigma)\right]^{*} Q_{(p)} U d_{y} s- \\
\int_{D} \Phi(x-y, \sigma) L\left(\frac{\partial}{\partial x}, \sigma\right) U d y=\left\{\begin{array}{c}
2 U(x), \forall x \in D \\
U(x), \forall x \in S \\
0, \forall x \in E^{3} \backslash \bar{D}
\end{array}\right. \tag{12}
\end{gather*}
$$

$p=0,1,2,3, \quad \tilde{P}_{0} \equiv \tilde{R}, \quad \tilde{Q}_{0} \equiv\left\|\delta_{j k}\right\|_{8 \times 8}$, where

$$
\begin{gathered}
R U=\left(H U, \delta_{1} \frac{\partial u_{7}}{\partial n}, \delta_{2} \frac{\partial u_{8}}{\partial n}\right)^{*} \\
P_{(p)} U=\left(H U,-\left(\delta_{1 p}+\delta_{2 p}\right) u_{7}+\delta_{3 p} \delta_{1} \frac{\partial u_{7}}{\partial n},-\left(\delta_{1 p}+\delta_{3 p}\right) u_{8}+\delta_{2 p} \delta_{2} \frac{\partial u_{8}}{\partial n}\right)^{*}, p=1,2,3, \\
Q_{(p)} U=\left(\ddot{U},\left(\delta_{1 p}+\delta_{2 p} \delta_{1} \frac{\partial u_{7}}{\partial n}-\delta_{3 p} u_{7},\left(\delta_{1 p}+\delta_{3 p}\right) \delta_{2} \frac{\partial u_{8}}{\partial n}-\delta_{2 p} u_{8}\right)^{*}, p=1,2,3,\right.
\end{gathered}
$$

$H U=\left(T(u, \omega)-\gamma_{1} n u_{7}-\gamma_{2} n u_{8}\right), T$ - stress operator of couple-stress elasticity [2]. $\tilde{R}, \tilde{P}_{(p)}, \tilde{Q_{(p)}}-$ conjugated operators.

Formulas (12) indicate on the construction of basic potentials of the theory of couple-stress thermodiffusion. Investigation of these potentials is passing by the same scheme, which is indicated in [2]. All theorems hold, with the corresponding alterations for the potentials of the couple-stress thermodiffusion.

References

1. W. Nowacki. Polish Academy of Sci. 15, N.2, 1974.
2. V. Kupradze and oth. Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity. North-Holland publ. comp.- 1979.
